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PROPULSION OF A FLAPPING AND OSCILLATING AIRFOIL

By I. E. Gagrrick

SUMMARY

Formulas are given for the propelling or drag force
experienced in o uniform air stream by an airfoil or an
airfoil-aileron combination, oscillating in any of three
degrees of freedom: vertical flapping, torsional oscillations
about a fixed axis parallel to the span, and angular
oscillations of the aileron about a hinge.

INTRODUCTION

It is the object of this paper to investigate theoreti-
cally the horizontal forces experienced by an airfoil
or an airfoil-aileron combination in a uniform air
stream made to execute flapping motion or to perform
angular oscillations about a fixed axis parallel to the
span  The problem treated is that of an infinite wing,
or wing and aileron, performing steady sinusoidal oseil-
lations in any of three degrees of freedom: vertical
flapping at right angles to the direction of motion,
oscillations about an arbitrary fixed axis parallel to its
span, and oscillations of the aileron about a hinge.

The work of Wagner (reference 1) for calculating
the distribution of vorticity in the wake of an airfoil
in nonuniform motion appears as a starting point. A
vortex wake is generated by the oscillatory motion,
" which in turn affects the.entire nature of the forces

experienced by the wing. Beautiful experimental
checks of Wagner’s theory of the manner in which the
circulation builds up have been obtained by Farren
and Walker. (Cf. reference 2, ch. 9 for a more detailed
bibliography.) Birnbaum and Kiissner (reference 3)
have also attacked the problem of obtaining the lift
forces on an oscillating wing by certain series expan-
sions that are rather cumbersome to handle. Glauert
(reference 4) has treated the case of an oscillating air-
foil and has obtained expressions for the forces and
moments that check with Wagner. Theodorsen (ref-
erence 5) has developed compact expressions for the
lift and moments in the case of an airfoil-aileron com-
bination of three independent degrees of freedom and
has applied the results to an analysis of the wing-flutter
“problem. The foregoing references are concerned only
with the lift forces, not with the horizontal forces;
however, von Kdrmén and Burgers, who present in
reference 2 a résumé of the work (to 1934} on non-

uniform motion, calculate there the propulsion effect
on a flapping wing. The present paper makes appli-
cation of the compact formulas developed by Theo-
dorsen and of the method outlined by von Kdrmén
and Burgers to treat the propulsion on a wing oscil-
lating in three independent degrees of freedom.

The assumptions underlying the theory are small
amplitudes in the various degrees of freedom and a
(infinitely) narrow width of the rectilinear vortex
wake, as well as the usual assumption of a perfect fluid.
Quantitative agreement with experimental values,
which are not very abundant, can hardly be expected
since the finite width of the wake is important with
regard to considerations of the resistance; neverthe-
less the results can be useful for interpreting such ex-
periments as exist on the so-called “Katzmayr effect”
(reference 6) and for clearing up certain aerodynamic
features of the nature of the flight of birds.! Experi-
mental tests on an oscillating and flapping wing are
being conducted at the present time by the N. A, C. A.

This paper is not concerned with the problem of

Autter, which is an instability phenomenon that mani-

fests itself in certain critical frequency ranges and is
due to an interaction and feedback of energy because of
coupling in the various degrees of freedom. (Cf. refer-
ences 3 and 5.) Profile drag is to be considered as ad-
ditive to the horizontal forces obtained.

FORCES AND MOMENTS ON AN OSCILLATING AIRFOIL

Consider an airfoil represented by the straight line of
figure 1. ‘The airfoil chord is of length 26 and (its mean
position with b as reference unit length) is assumed to
extend along the z axis from the leading edge x=—1
to the trailing edge x=--1. The coordinate z=a repre-
sents the axis of rotation of the wing, z=c the coordinate
of the aileron hinge. The airfoil is assumed to undergo
the following motions with small amplitudes: A vertical
motion h of the entire wing, positive downward; a
rotation about z=a of angle of attack «, positive clock-
wise and measured by the direction of the velocity »
at infinity and the instantaneous position of the wing;
an aileron motion about the hinge r=¢ of angle 8,

1 It is interesting to observe that the Katzmayr effect occurs in nature also in the

motion of fish. See*“The Physical Principles of Fish Locomotion,” by E. G. Rich-
ardson, Jour. Bxp. Biology, vel. XIII, no. 1, Jan. 1936, pp. 63-74.
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measured with respect to the undeflected position of
the wing itself.

Leading edge

/ixié of
rofafion.
Aileron hinge.

|

Trailing edge.

FiGUuRE 1.—Parameters of the airfoil-aileron combination.

Let us consider sinusoidal oscillations in the various
degrees of freedom and use the complex-number nota-
tion

B= Bt @tte)
b= hyet@ite)

The constants ag, 8o, and h, represent the maximum
amplitudes in the various degrees of freedom, ¢y, ¢1,
and ¢, are phase angles, and the parameter p determines
the {requency of the oscillations. By means of the rela-
tion

(1)

a— aoei(pt-hpo)}

r=y @)

an important parameter k is defined, i. e., k=pb/v. It
will be seen that 2x/k is the wave length between suc-
cessive waves in the vortex wake in terms of the half-
chord b as reference length.

The following three formulas for the lift and moments
on an oscillating airfoil of three degrees of freedom are
due to Theodorsen and are taken from reference 5:*

P=— pb*(wrastwh—nbac—vTf—TibB)
—27p0bC(k)Q 3)

M= — pbz[w(%—a)vbd+7rb2<gl-+a2>&+Tlsvzﬁ+ Ty
+2T13b2é—awbii]+zpvb2w<a+~;-)0(k)Q @

M= —PbQ[Tx'ﬂ)bO.t‘i‘2T13bzb'é +;‘1‘,272T1sﬁ—2i7r7’bT196
»%szzé—T,bii]—pvaTlgO(lc)Q )

where

Q:va—{—il,—]-b(%— a>d+%_T10@5+§b;TnB

These equations are to be interpreted as follows: The
real part of P denotes the lift force (positive downward)

2 The writer wishes to record the fact that in order to establish a check on these
general relations he has compared them with the widely varying expressions given
by Wagner, Glauert, von Karmén and Burgers, and Kiissner in their special cases
(references 1to 4). Identical agreement has resulted in all cases, except that in the
case of Kiissner’s formulas a numerical check was made since an analytic check wasnot
feasible. 'The numerical agreement was good except in the case of the wing-aileron
combination where Kiissner makes some rough approximations.

A recent paper by Cicala (reference 7) deserves mention. Cicala derives expressions
for the lift and moment on an oscillating airfoil that seem to agree with the results of
Theodorsen, although the method is somewhat more involved. ‘The functions de-
noted by Cicala as M and M correspond to 1-F and -G defined in eqnation (6).

associated with the motion given by the real parts of
(1); 1. e., a=ay cos (pt+ey), B=F cos (pt+e¢,), and
h=hy cos (pt+e,). The imaginary part of P denotes
the lift force associated with the motions a=—a, sin
Pt+eo), B=Py sin (pt+¢1), and h=he sin (pt-+gs).
Similarly M, and M, denote in complex form the mo-
ments (positive clockwise in fig. 1) about z=a and
z==¢, respectively, due to the motions (1). (The mean
value of o or 8 is considered zero. When the mean
values are different from zero, the forces and moments
arising from constant values a,, and 8, are to be added.)
In equations (3), (4), and (5) there occur various
symbols that have not yet been defined. The T1”s,
i. e., T1, T3, T,, ete., are constants defined completely
by the parameters ¢ and ¢ (reference 5, p. 5). For
reference they are listed in appendix I, where there is
also given a collection of the symbols employed in the
notation of this paper. The funetion C(k) is a useful
complex function of the parameter k (see (2)) and is
given by

Ck)=F(k)+iG(k) (6)
where
poh S Y+ Y, (=)
i+ Yo)2+ (Y1 —y)?
g ¥k diy

BCAR ORI

Functions Jy, J;, ¥y, and Y, are standard Bessel func-
tions of the first and second kinds of argument k.
Figure 2 and table I, which are taken from reference
5 (with certain minor changes), illustrate these func-
tions. :

In what follows we shall be interested only in one
part of the preceding complex equations. It isan arbi- -
trary matter whether to employ the real or imaginary
parts. The choice made here is to treat the imaginary
parts, and we write down for reference the imaginary
parts of equations (1), (3), 4), and (5):

a=ay sin (pt+ep)
8= sin (pt+¢1) (")
h=ho sin (pt-+¢s)

100
F —
.60

.60

40

20 ]

-G
¢ A

0 Z A48 ®iz 16 20 24 28 32 36 40
Y

F1GURE 2.-~The functions F and —@G against 1/&.
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P=—pb*vmogp cos (pt+¢o) — mhep? sin (pi-+¢,) + wbaoyp? sin (pt+- @)
—0T4Bep cos (pt+ey)+T1bBup® sin (pt-+¢1)]

—21rp1)bF[?)ao sin (pi-+ @) -+hep cos (pt—l-goz)—i—b(%— a)aop cos (pt-+ep)

+ L8, sin (pt-+¢) + 2206w cos (t-+-e1) |

—27pvb Gl voy cos (Pt-+op) —hop sin (pt+¢z) —b %—a)aop sin (pt+ o)

+%’vﬁo cos (pt+so1)-—%bﬁop sin (pH—qol):I (8)

M=~ (50 hap 008 (pt-+p0)—r0(-+0*)eup? sin (ot-+0
+ T150*Bo sin (pt--o1) 4 Tigvb Bop cos (pt--o1)
—2T13b*Bop* sin. (pt+ 1) +awbhep® sin (pt-+ saz)]

+2pvbz1r(a, +—;—)F|:vao sin (pt-+eo)+hop cos (pt+ )

+8(3—a )ap 08 pt-+e0)+ 2208, sin (pt-+0)

-l-%bﬁop cos (pt-+ <p1)]+2pvb27r(a+%>G[vao cos (pt-+eo)

—hep sin (pt+¢z) —b %“0/)“019 sin (pt+soo)+1—;r‘—°vﬂo cos (pt-+er)

— 326 sin -+ | ©®)
Ms= -—pbz[T 17’06an cos (pt+ o) —2Tb%ap® sin (pt-+ ) +'71;”2T1330 sin (pt-+¢1)

*g;vbTmﬁop cos (pt+¢y) +7—1‘_T3b2ﬁop2 sin (pt+¢y) + Tibhop® sin (pt+ <Pz):|

VT ] 0o sin i+ ) +hep €05 (ot-+0)+b( 5 Jaup g05 (pt-+0)

-I—%vﬁo sin (pt-+ey) —l——g—”%bﬁop cos (pt—{—<p1)]—— prZTmGI:vao cos (pt+ )

~hap sin (t-+o) (5= Joup sin @i-+e0)+ 2206 cos (pt-+)

~Tahgp sin <pt+¢1)] (10)

In addition to these equations we will need the expression for the force on the aileron. This equation is obtained
in complex form as (use formulas on pp. 5-8, reference 5)

Py=— pb* —-vTu‘x—TJ'i—l—ng&—ﬁl;stB—-%Tzﬁ)

—2pbv4/1 —cz[g(l —c)éz—l—;l;v 1 —czﬁ—i—%(l —¢) TmB]
—2p0bToC(k) @
And the imaginary part is

P 5=“Pb2|:“7’T4a02’ cos (pt+eo) + Tihup? sin (pt-+ ;) —bTaep® sin (pi-+¢o)
— 0Ty 008 () + o2 Ty sin (pt-+r) |~2ob0/T=0] S(1—eup 008 (t-+e)
+;1r01/1_:5530 sin (pt""Pl)‘*‘Q%,(l—C)TmﬁoP cos (Pt+<p1)]—~2pvszoF[va0 sin (pt+op)
+hep 005 (pt-+e)+H( 50 )ap 605 (pt-+0) -+ sin (pt-+)
+%~;bﬁop cos (Pt+¢1)]~zp”szoG[vao cos (pt+ o) —hep sin (pt+s)

——bG-— )aop sin (pt-l~¢po)+%gvﬂo cos (pH«m)-—%bBop sin (pt+<p1):l (1

73996372
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Following the method of von Karman and Burgers
(reference 2), the average horizontal force will be
determined in two ways: (1) by the energy formula
given in equation (12), and (2) by the force formula
given in equation (13). The agreement of the results
of the two methods will thus furnish a check on the

work.
ENERGY FORMULA

W=E+Pw (12)
where W represents the average work done in unit
time in maintaining the oscillations (7) against the
forces and moments (8), (9), and (10); E represents the
average increase in kinetic energy in unit time in the
vortex wake and; P,» denotes average work done in
unit time by the propulsive force P,.?

FORCE FORMULA
P,=npS*+aP+BP; (13)

where P, is the propelling force; o and 8 are given in
(7); P in (8), and Pgsin (11); S is obtained from the

relation S= hm 71/x+1 where v is the vorticity

distribution. The value of S is finite, since v is infinite

in the order of at the leading edge z=—1, and is

1
Va+1
given in equation (25) and derived in appendix II.%

We proceed first to evaluate W in equation (12).
The instantaneous rate at which work is done in main-
taining the oscillations is

4

W= —(Ph+M,a+MsB)
For the average work done in unit time we have

WL | (Ph+ M.t My
TJo
On employing equations (7) to (10) and performing the

indicated integrations, we obtain after some lengthy
but elementary reductions

(14)

W— ™ sz (Blh02+Bza02+B3502+ 2B4aoho+2Bsﬁoho
+2Bea030) (15)

where

By=Fr

| BFMH__@)-@-%)p@-m%]}
Tu ]“F—f— T G)]

3 When the energy released in the wake in unit time is less than the work required
in unit time to maintain the oscillations, i. e., Z<W, then P is positive and is a true
propelling force. When E> W, then P: is negative and denotes not propulsion but
resistance or drag.

4 Formula (13) is obtained by a slight extension of the method of reference 2, pp.
305-306. The “suction’” force zp 82 arising from the infinite vorticity at the leading edge
is explained in reference 2 (pp. 52 and 306) along lines laid down by Grammel and
Cisotti. (See also reference 8, pp. 185 and 203.) The fact that this infinity occurs
implies that the ideal flow for an infinitely thin wing is nnrealizable. We are regard-
ing this case, however, as a limiting one of a wing that is rounded and smooth at the
leading edge and sharp at the trailing edge.

COMMITTEE FOR AERONAUTICS

B4=g[<%—~2aﬁ' +%>COS (¢2—0)
~(%~6)sin (e |
By= b[(“ T4+ Tn + TmF‘f‘ T G>GOS (o2—e1)
Tm F+ T4 G>Sm (pa— <P1):l

([T 7. ( (BTt T )
2 27

—(( %9 —->g:|cos (e1—00)

gif-k ~((e+3) 2+ 200k
+ ‘T‘HZ_EZE“%“>G]SIB (wl—soo)}

In order to calculate Z in equation (12), we need the
expression for the vorticity in the wake. The magni-
tude of the vortieity in the wake is given in complex

form by (@=1b

U= Upeies” 5 (16)
where Uy’ is a complex quantity determined in (19).
(Cf. reference 5, p. 8, in which z instead of z—1 is used
in the exponent.) From the definition of the circula-
tion about the airfoil as the integral of the vorticity in
the wake we have in complex form,

~ f Udz=—}Useiee's 17

Also from reference 5, equation (8), the condition for
smooth flow at the trailing edge leads to the relation

f‘/x—Hde va+h+b(—~—a, —l—g;—l—(’vﬁ

Ty o
+b5, =4
Combining (17) and (18) we may write

P =27Q— f(\/’”+1—1)de

On equating coeflicients of ¢?* on both sides of this
relation and solving for the quantity Uy’ (for the
evaluation of the definite integral in terms of Bessel
functions see reference 5, p. 8), we obtain

(18)

Uyeto=—4(A+iB) (J+iK)e * a9
where,
y _JI+Y0 __Ifl—Jﬂ
J= 7 K= IR
D= (J,+ Yo+ (V1= o), J2+Kz.—:.5.
and
A=vaqy c08 ¢p—hep sin <pz-b(~—a,)ozop sin ¢
—}——T—vﬁo cos (ol-—T—bﬂop sin ¢,
(20)

B=vq, sin @yt hyp cos rp2+b<—~a>a0p €OS ¢

T
+‘1'l:'”ﬁo sin ¢; 4 E;bﬁop o5 ¢t
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When the imaginary part of U is denoted by v, which
is the only part of interest, the vorticity in the wake is
given by

y=A4; cos kx-+B, sin kz
where

1A4v=(BK—AJ) sin pi— (AK+BJ) cos pt
%Boz(BK——AJ) cos pi-- (AK+BJ) sin pi

The induced vertical velocity at a great distance z
downstream is
_ 1 © (x/)
we=gz)_. 2—2"%

=%(A0 sin kz—B, cos kz)

The difference in potential at points of the z axis in the
wake is

¢2—¢1=bf—ydx=%(Ao sin kx—B, cos kx)

and the kinetic energy in the wake (per unit length) at
a point x along the surface of discontinuity far from the
airfoil is?®

=g, (61— ) (22)

:% ,;—21—)];(4410 sin kx—B, cos kx)?

=4p%[(BK—AJ) cos (pt+kx)

4+ (AK+BJ) sin {pt-+kz)]*
The mean value of E; with respect to time is inde-
pendent of z and is given by

= P 2nfp 2pb
E~L L Eidt=25 (424 B)

We shall now proceed to the direct calculation of P, from (13).

and in complex form is given by

@1 |

And, finally, the average value of the increase in energy
in the field in unit time is

oy Zpb”(A2+Bz)

or also

_ 3
E=x sz%[01h02 + 020!02 -+ 03 Boz + 204050"/0

+ 205 ﬁoho +2050503«)] (23)

where

O=

= 260[%:”(2 )]

_ 20 Tm Tu
Oa—rkD )]

CQ:%[—— sin (p3— o) +(—;———a) cos (<P2—<Po)]

Cie % Tm Sm (p2— sol)+— €08 (h— wx)]

20 /Ty 1 T,
7;0 k2+ §_ ) u) cos (p1—eq)

xkD)
T T2\ .
+§<7m §—a>—§‘li_> sin (@1“%)]
Equation (12) now defines P,» and hence P,. We
have

=5

Po=W—F
or _
Po=wpbp*[Asihe®+ Asag*+ A3fy? +2 4,00l
+2Asﬁoho+2Aeaoﬁo] (24)
where from equations (15) and (23)
A1=B1“"01, Az"—‘Bz-—Oz, ete.

The value of S is derived in appendix 1I

9| 2 .
S= #[20(/6)@—-6&—;1/1——6272[‘1—]— %bﬁ]

Again we shall use only the imaginary part of this expression which is

:l‘/—g(M sin pt+ NN cos pt)

where

(25)

' 7 7 -
M= F‘I:vao €08 po—hop sin @, — b(——a agp SN @ f@‘ﬂo cos salw"z-";bﬁop sin st :

. . VATY
__2(}1:7;040 sin g+ hep cos <P2+b<—2—~— >a0p cos ¢+ Y—%’vﬁo sin ¢1+2—11:_b602) cos @1]

. 2 T .
+bagp sin ¢0——1—r1/1-—02 08, cos %———7;466017 S ¢y

o)

5 The expressmn ) pw (ps—e1) is actually equal to —pn;S—‘ taken along the surface of discontinuity (the z axis) where ¢=¢3—¢ and g%=u-',. ‘The latter expression is

equal to & 2 [ ( ) (%2) ]taken over a proper space interval, i. e., represents the kinetic energy in a certain volume.
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and

N =2F[va0 sin @p-+Hhep cos <p2+b(—21——(1,>aop cos gao—l—%f’vﬂo sin QDI‘I'"%—;‘:_bﬁgp cos <p1:|

+2G} vy cos go—hyp sin ¢2~b(%—a>aop sin gao—!—z;:—"vﬂo cos go,—-%bﬂop sin go;]

2 iy . T,
—bagp cos go—=/1—c* vy sin o1+—*bByp, cos ¢

The mean value of 7pS? with respect to time is

2nfp

g | mSat="EOLNY

"This expression becomes, after a considerable number of terms cancel,

. oS 2=mpbp*(ashe® + dao® a3 82+ 2a40tsho 205 8oko 20500 80) (26)
a,=F>4G?
w=b{( @) (=) |+~ ('““ F “‘G;
ool (B B
—I—F< 2Tw2}£/21 T4T11>+ (T4Tm+fu\/1 Z)}
(F’2+Gz)[~—~ sin (gz— 400)+<—— > cos (sﬂz*&ﬂo)]—‘g' cos (¢2"‘Pu)+‘g sin (‘Pz—‘ﬁo)}
=b{<F2+ 6~ sin (a0 +52 c0 () [+ 2VE2T sin (o) +5 008 (o) |
+gr2‘/? cos (ga—e1) —2‘ sin (402—‘%)]}
e e (E e “(2 )] c0s (o) +| (5 —a)— 32 [ sin (e
2 B a) T cos (= -{2—*’1—32(1 )+ LD sin (i
+4 ﬁ%,%;i+%(-2——a)+%] sin (=) + 22— a) 4 LT T cos (1w
12 L din (o) — 2 cos (10
We proceed to calculate the average values of the | Also L
!ng)'r’nasnizlP( 1alr§(.i ﬁf?}i ;;19 (rle?;lllg employing equations (7), L [3Pg=prp%(03602+2c5ﬁoh0+2cﬁa0{30) (28)
wh;a . P =1 pbp? (batg® 24000+ 205010 50) - 27) WCS:bZ[_Ez_ljkgz If; Tszo+(;z T;Zzo]
bz=bz: 5 k2+(2 }G] —{< T”,f)cos (e2— 1) sm (ea— wl)]

b4=§[ §+72,> co8 (¢2“v§0o)+7£ sin (<p2—<po)] Gs—gt %-%Ig-}“ TZO(Z“U)G] cos (¢1— ¢o)

q Ty, G
big] (— 2o 2+ 22) 008 (o= e0)

GTIO

._*_[Tr—(l-—c)w/l-—c __:{’1}2_0(%%>F

+( T"+FT“+~ == sin (¢, — %)] ——Tﬂ% ,Csm (o1— <po)]
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Finally from (13) the average propulsive force is

ﬁz = pbp?ahe® -+ (azb2) o’ +- (a3-+-¢5) Bo®
+2(a.-- 64) aoly+2(as+ cs) Boho
42 (as+bs+-c5) Bl (29)

In order that equations (24) and (29) agree we must
have that
A1:(I/1

2=y by
As=aztc;
Ai=a+b,
As=az+cs
Ag=as+bs+cs
Each of these relations may be reduced to an identity,
e. g., consider 4; and ¢;. From (15), (23), and (26)
AlzBl—azF—;%)
a;=F*1-G?

In order that A,=a; the following relation must hold

(30)

F=r4-6* (31)

ch
To show that this is true note that

FQJI(J1+Y0)+Y1(Y1 Jo) _JiE+ Y+ N1 Yo—dJo Y]
i+ Yo) - (Yi—dy)? D

Py = (FiG) (F—i6)=TE L

(cf. reference 5, p. 8) and from a well-known property
of the Bessel functions,

Ji Yo—

Hence equation (31) follows.

By the use of the relation (31) and the definitions of
the various T"s given in the appendix, it can be veri-
fied that the remaining relations in (30) are also iden-
fities.

Tt may be of interest to consider the special cases of
one degree of freedom. Let the motion of the wing
consist only of the vertical motion / at right angles to
the direction of flight, i. e., flapping motion. The pro-
pelling force is then ©

JOY]:WE]C

P,=mnpbp*h(F*+G?) (32)
Consider in this case the ratio
Py __energy of propulsion
W total energy
FZ G2
=t (33)

This function, shown in figure 3, represents the theo-
retical efficiency of the flapping motion (unity=100 per-
¢ This result agrees with the formula of von Kirman and Burgers (reference 2, p.
306). The expressions of reference 2 denoted by
bi=1+A1—-A 41 (@—8)+ A 4 (P-O)
ba=Aa—2 A2 (@—8)—A 4; (P=-0C)
reduce in our notation simply to 2F and 2@, respectively.

cent). It is observed that a propelling force exists in
the entire range of 1/k, the efficiency being 50 percent
for infinitely rapid oscillations and 100 percent for
infinitely slow flapping.
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Fi1GURE 3.—The ratxo of energy of propulsion to the energy required to maintain the

oscillations as a function of 1/k for the case of pure flapping.

For the special case of angular oscillations about ¢
alone (h=0, 8==0) the horizontal force is

Po—mpbpiiad] <F2+G2>[,—f§+(%— @) |

1/1 G
+5(z—e ~p(379); A
5 7
A1/
_ (&j/ /\V
“ %
// 2 —
3 /| ol " /
E / 1 | /q’ |
Wé‘ o z/‘/ / // / az l poset
/// - //7 ////
| 15/, 4
/ e || Ao on T9T
- /?ange lof ,L?/"O,?U/S/O N
R
aso{ | | 1777
g / 2 3 4
Vk

F1eure 4.—The raiio of the energy dissipated in the wake to the energy required to
maintain the oscillations (E/W) as a function of 1/k for the case of pure angular
oscillations about z=a.

In figure 4 there is shown the ratio E/W, in this case
for several positions of the axis of rotation. These
curves give the ratio of the energy per unit time released
in the wake to the work per unit time required to
maintain the oscillations. In the range of values
0< E/W<1, P, is positive and denotes a thrust or
propelling force; for other values it is negative and
denotes a drag force.

Lanciey MEMORIAL ABRONAUTICAL LABORATORY,
NaTioNAL ADVISORY COMMITTEE FOR AERONAUTICS,
Lancrey Fierp, Va., May 4, 1936.



APPENDIX I

NOTATION

a, angle of attack (fig. 1).

8, aileron angle (fig. 1).

h, vertical distance (fig. 1).

. da .. da -

a=‘—%; a=d7> ete.

oy, Bo, Moy ¢, @1, @2, amplitudes and phase angles
of the oscillations (equation (7)).

b, half chord, used as reference length.

z, coordinate in direction of airfoil chord.

t, time.

v, velocity of the general motion in direction of
Z axis,

P, 2r times the frequency of the oscillations.

k, reduced frequency (equation (2)). The wave
length between successive waves in the vortex
wake is 2wb/k.

a, coordinate of axis of rotation (fig. 1).

¢, coordinate of aileron hinge (fig. 1).

1, imaginary unit /—1.

e, base of natural logarithms.

p, mass density of air.

P, lift force on airfoil {({+-downward in fig. 1).

M., moment on airfoil about ¢ (+clockwise in fig. 1).
Mp, moment on aileron about ¢ (4-clockwise in
fig. 1).
Py, lift force on aileron (+downward in fig. 1).
Ok, F, G, Jo, J1, Yo, Y1, J, K, D, Bessel functions of
the argument k. (Cf. equations (6) and
(19), fig. 2, and table I.)
W, average work done in unit time in maintaining
the oscillations.

E, average increase of kinetic energy in the wake
in unit time.

P,, average force in the direction of the z axis
(+propulsion, —drag).
Ay A By By, Ch...Cs, ay,... g, ba, By, b, €3, €5, cg,coeflicients.

@, defined by equation (18).

A, B, defined by equation (20).
Ay, By, defined by equation (21).
M,.N, defined by equation (25).

U, distribution of vorticity in the wake in complex
form (equation (16)).

8

Ugete, coefficient’of U, given in equation (19).
v, imaginary part of U.
S, defined by equation (13); see also appendix II.

T, circulation about the airfoil, defined by equa-
tion (17).

DEFINITIONS OF THE 7T’s
1 S
T\= —3@2+e) J1—c®+ccoslec

Ty=c(1—c®) — (1 +€%)+/1—¢? cos™ ¢4-¢c(cos™ ¢)?
[To=Ty(Tu+T1)]

Ty= ”‘%(1 —c) (5¢*+-4) +7110(7 +26)Y1—¢ cos™' ¢
—(%—!—c‘“’ (cos™! ¢)?
Ty=c/1—c*—cos™' ¢

Ty=—(1—¢*)+2cy/1—¢? cos™! ¢— (cos™! ¢)?
Ts=T2

T7==%c(7 +2¢%)4/1 —~c2—(~é+cz> cos~le

Te= ~—%(1 +2¢%)/1—c*+c cos™! c= —%(1 —e)i—cT,

ﬂ:%[é(l-—cz)%—{-aﬂ:l

» TIO:"J]-_ 2"‘]"(}05_1 c

Ty=(2—6)y1=c*4(1—2¢) cos™' ¢
Tyy=(2+¢)y/1——(1+2¢) cos™ ¢
[Tm"" Tw=2T]

Tiy=—5(Ty+ (c—a) T))

1,1
T14~i_6‘+§0'/0

Tio=Ti+THo=_1 +6’)1/1 —ct
1
Te=T1—Ts— (C-G)T4+§T11

) 1 1
[T13+T17="‘(‘2“‘— >T4‘+§T11]
T17,=”“2T9—T1+(CL“—%>T4
T18=T5‘—T4T10
T19=T4T11
Toy=—+/1—c*+cos™t ¢
[T20=T10—21/1-02]



APPENDIX 11

EVALUATION OF § (EQUATION (25))

From reference 5 (p. 7) we have that the condition
for smooth flow at the trailing edge is obtained from the
equation

%(wﬁ-%+¢;}+¢H—¢ﬁ+¢é)ﬂ=0 1)

where the ¢’s are as follows (a + sign is to be prefixed

to each ¢, 4+ for the upper surface, — for the lower
surface):

a(pp o Z—1
o f \/ 1—a2?x— Ud%
Ga=0ob~/1—22
qo;,:ibbx/l-—-xz

Pa=ab” %—x—a Vi—a?
¢ﬂ=%1)ﬁb[w/1—~x2 'cos‘lc-—(x-—c) log N]

‘Pﬁzzlrﬁbz[‘/l — =224 (2—2¢) /1—a? cos™l¢
~(@—c)* log N]
where

yolma— iy

r—ce
Condition (1) leads to the relation (cf. (18))

f \/’”"+1 deo_va+h+b(—— )a+Tm o8

T
+b5 =0 =)
The leading-edge vorticity may be written as
o) 28
25; (et oatoiteitos b i)oay= Vife

On substituting for the ¢’s, making use of relation (2)
and of equation X1, reference 5, which is

N ~ikzo
O(k)—f‘ S
T [ $0+1

1 \/xoz_

e—ikzo dwo

there results _
S=3/2—2 [2C(k) Q—bd—%m vB—I——Zr:‘-‘ b6
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TABLE I.—VALUES OF THE BESSEL FUNCTIONS

k 1/k Jo Ji Yo b1 D F —G
© L (N DU SR PRSI (B 0.5000 { 0
10 Y4o| —0.2459 { 0.0435 0. 0557 0. 2490 .2548 1 . 5006 .0124
6 1s . 1506 |—. 2767 | - 2882 { —. 1750 .4251 | . 5017 . 0206
4 ¥} — 3971 |— 0660 | —.0169 . 3979 .6389 | .5037 .0305
2 % . 2239 L5767 . 5104 =, 1070 1.203 . 5129 L0577
1 1 L7652 | . 4401 . 0883 .7812 2. 6706 . 5394 . 1003
-8 114 L8463 | .30688 | —.0868 L9780 3.4076 | .5H541. 11656
.6 1% - 9120 . 2867 . 3085 -1.2604 4.7198 5788 1378
5 L0385 | L2423 | — A48 | —1.4714 5.8486 5979 . 1507
4 244 . 9604 . 1960 - 6060 | —1.7808 7.6823 6250 1650
.3 3v4 9776 1483 | — 8072 | —2.2920 | 11.130 6650 1793
.2 . 9900 0995 | —1.0810 | —3,3235 19. 570 1276 1886
.1 10 L9975 0499 | —1.5342 | —6.460 H7.810 8320 1723
.0b 20 L9994 0250 | —1.979 |-—12.8 194.26 . 9090 1305
L0261 40 - 9999 0126 | —2.430 |~—25. 6 713.4 L9545 L0872
.01 100 1..000 0050 | —3.006 {—63.7 4195 . 9824 . 0482
a «© 1.000 — — o @ 1. 000 0
9

U.S. GOVERNMENT PRINTING OFFICE: 1937



—

s

o

2

e
e e

-

-
ot >



